
OQuLus
Light-based quantum computers in discrete and continuous variables
Project manager
Pascale Senellart-Mardon, CNRS
Overview
The OQuLus project brings together French experts in photonics and quantum technologies to build two prototypes of NISQ (Noisy Intermediate Scale Quantum) optical quantum computers.
Keywords: Photonic qubits, optical qumodes, squeezing, low-loss integrated photonic circuits, quantum light sources, quantum computing, quantum gates, single quantum emitters, single photon detectors, optical calculus
Social media: LinkedIn
In a nutshell
Photons have an infinite decoherence time, an advantage unmatched by quantum computing approaches based on solid-state qubits. Photonic quantum computing also offers excellent prospects for scaling up, as the platform is based on the well-established semiconductor industry. Photons are therefore leading competitors in the race for quantum computing, as evidenced by the historic demonstration of quantum advantage in computing.
France has a head start in this race, which is reflected in the ambitions of the OQuLus consortium. It brings together a wide range of theoretical and experimental expertise, from semiconductor physics to integrated optics, for both digital encoding – discrete variables DV – and analog encoding – continuous variables CV.
Challenges
OQuLus aims to build two prototypes of NISQ (Noisy Intermediate Scale Quantum) optical quantum computers using two approaches:
- In DV, the project is developing an 8-qubit prototype with quantum boxes emitting single, entangled photons, coupled to reconfigurable ultra-low-loss silicon nitride computing circuits.
- In CV, the researchers follow a measurement-based approach using time-frequency modes to create cluster states from 10 nodes (cavity generation) to 10,000 nodes (single pass with time multiplexing), which they combine with mode-selective photon addition or subtraction to implement non-Gaussian operations.
Tasks
- WP DV-S: Quantum generation resources
- WP DV-NGS: Next-generation quantum sources
- WP DV-BB: Discrete Variable Quantum Computing (DVQC) building blocks based on circuits
- WP CV-G: Gaussian state generation
- WP DV-SIV: Demonstrator assembly and first demonstrations
- WP CV-NG: Non-Gaussian state generation
- WP CV-P: Prototype quantum computer CV
- WP TH-S: Realistic quantum state engineering
- GT TH-PR: Protocols and resource characterization
- WP M: Managements
Consortium
- Centre de Nanosciences et de Nanotechnologies (C2N, CNRS / Université Paris-Saclay)
- CEA-Irig
- CEA-Leti
- Institut de physique de Nice (INPHYNI, CNRS / Université de la Côte d’Azur)
- Institut des NanoSciences de Paris (INSP, CNRS / Sorbonne Université)
- Institut Néel (CNRS)
- Jeunes Équipes de l’Institut de Physique du Collège de France (JEIP, Collège de France / CNRS)
- Laboratoire Charles Coulomb (L2C, CNRS / Université de Montpellier)
- Light, nanomaterials, nanotechnologies (L2N, CNRS / Université de Technologie de Troyes)
- Laboratoire Charles Fabry (LCF, CNRS / Institut d’Optique Graduate School)
- LIP6 (CNRS / Sorbonne Université)
- Laboratoire Kastler Brossel (LKB, Collège de France / CNRS / ENS-PSL / Sorbonne Université)
- Laboratoire Méthodes Formelles (LMF, CNRS / ENS Paris Saclay / Université Paris Saclay)
- MajuLab, IRL CNRS, Singapour
- Laboratoire PHotonique ELectronique et Ingénierie QuantiqueS (PHELIQS, CEA / Université Grenoble Alpes)
- Physique des lasers, atomes et molécules (PhLAM, CNRS / Université de Lille)
- Quandela
- Université Paris Cité