
OQuLus
Light-based quantum computers in discrete and continuous variables
Project manager
Ségolène Olivier, CEA
Mattia Walschaers, CNRS
Overview
The OQuLus project brings together French experts in photonics and quantum technologies to build two prototypes of NISQ (Noisy Intermediate Scale Quantum) optical quantum computers.
Keywords: Photonic qubits, optical qumodes, squeezing, low-loss integrated photonic circuits, quantum light sources, quantum computing, quantum gates, single quantum emitters, single photon detectors, optical calculus
Social media: LinkedIn
In a nutshell
Photons have an infinite decoherence time, an advantage unmatched by quantum computing approaches based on solid-state qubits. Photonic quantum computing also offers excellent prospects for scaling up, as the platform is based on the well-established semiconductor industry. Photons are therefore leading competitors in the race for quantum computing, as evidenced by the historic demonstration of quantum advantage in computing.
France has a head start in this race, which is reflected in the ambitions of the OQuLus consortium. It brings together a wide range of theoretical and experimental expertise, from semiconductor physics to integrated optics, for both digital encoding – discrete variables DV – and analog encoding – continuous variables CV.
Challenges
OQuLus aims to build two prototypes of NISQ (Noisy Intermediate Scale Quantum) optical quantum computers using two approaches:
- In DV, the project is developing an 8-qubit prototype with quantum boxes emitting single, entangled photons, coupled to reconfigurable ultra-low-loss silicon nitride computing circuits.
- In CV, the researchers follow a measurement-based approach using time-frequency modes to create cluster states from 10 nodes (cavity generation) to 10,000 nodes (single pass with time multiplexing), which they combine with mode-selective photon addition or subtraction to implement non-Gaussian operations.
Tasks
- WP DV-S: Quantum generation resources
- WP DV-NGS: Next-generation quantum sources
- WP DV-BB: Discrete Variable Quantum Computing (DVQC) building blocks based on circuits
- WP CV-G: Gaussian state generation
- WP DV-SIV: Demonstrator assembly and first demonstrations
- WP CV-NG: Non-Gaussian state generation
- WP CV-P: Prototype quantum computer CV
- WP TH-S: Realistic quantum state engineering
- GT TH-PR: Protocols and resource characterization
- WP M: Managements
Consortium
- Centre de Nanosciences et de Nanotechnologies (C2N, CNRS / Université Paris-Saclay)
- CEA-Irig
- CEA-Leti
- Institut de physique de Nice (INPHYNI, CNRS / Université de la Côte d’Azur)
- Institut des NanoSciences de Paris (INSP, CNRS / Sorbonne Université)
- Institut Néel (CNRS)
- Jeunes Équipes de l’Institut de Physique du Collège de France (JEIP, Collège de France / CNRS)
- Laboratoire Charles Coulomb (L2C, CNRS / Université de Montpellier)
- Light, nanomaterials, nanotechnologies (L2N, CNRS / Université de Technologie de Troyes)
- Laboratoire Charles Fabry (LCF, CNRS / Institut d’Optique Graduate School)
- LIP6 (CNRS / Sorbonne Université)
- Laboratoire Kastler Brossel (LKB, Collège de France / CNRS / ENS-PSL / Sorbonne Université)
- Laboratoire Méthodes Formelles (LMF, CNRS / ENS Paris Saclay / Université Paris Saclay)
- MajuLab, IRL CNRS, Singapour
- Laboratoire PHotonique ELectronique et Ingénierie QuantiqueS (PHELIQS, CEA / Université Grenoble Alpes)
- Physique des lasers, atomes et molécules (PhLAM, CNRS / Université de Lille)
- Quandela
- Université Paris Cité